Validate & register flow cytometry data#
Flow cytometry is a technique used to analyze and sort cells or particles based on their physical and chemical characteristics as they flow in a fluid stream through a laser beam.
Here, weβll transform, validate and register two flow cytometry datasets (Alpert19 and FlowIO sample) to demonstrate how to create and query a custom flow cytometry registry.
!lamin init --storage ./test-flow --schema bionty
Show code cell output
π‘ creating schemas: core==0.47.5 bionty==0.30.4
β
saved: User(id='DzTjkKse', handle='testuser1', email='testuser1@lamin.ai', name='Test User1', updated_at=2023-09-06 17:07:55)
β
saved: Storage(id='7BMzjDBU', root='/home/runner/work/lamin-usecases/lamin-usecases/docs/test-flow', type='local', updated_at=2023-09-06 17:07:55, created_by_id='DzTjkKse')
β
loaded instance: testuser1/test-flow
π‘ did not register local instance on hub (if you want, call `lamin register`)
import lamindb as ln
import lnschema_bionty as lb
import readfcs
lb.settings.species = "human"
β
loaded instance: testuser1/test-flow (lamindb 0.52.2)
ln.track()
π‘ notebook imports: lamindb==0.52.2 lnschema_bionty==0.30.4 readfcs==1.1.6
β
saved: Transform(id='OWuTtS4SAponz8', name='Validate & register flow cytometry data', short_name='facs', version='0', type=notebook, updated_at=2023-09-06 17:07:58, created_by_id='DzTjkKse')
β
saved: Run(id='EHPP1Ldy9I7CweDEXlV6', run_at=2023-09-06 17:07:58, transform_id='OWuTtS4SAponz8', created_by_id='DzTjkKse')
Alpert19#
Access #
We start with a flow cytometry file from Alpert19:
ln.dev.datasets.file_fcs_alpert19(
populate_registries=True, # pre-populate registries to simulate an used instance
)
PosixPath('Alpert19.fcs')
Use readfcs to read the fcs file into memory:
adata = readfcs.read("Alpert19.fcs")
adata
AnnData object with n_obs Γ n_vars = 166537 Γ 40
var: 'n', 'channel', 'marker', '$PnB', '$PnE', '$PnR'
uns: 'meta'
This AnnData
object does not require filtering, normalizing or formatting, hence, there is no step.
Validate #
First, letβs validate the features in .var
using CellMarker
:
lb.CellMarker.validate(adata.var.index);
β
27 terms (67.50%) are validated for name
β 13 terms (32.50%) are not validated for name: Time, Cell_length, Dead, (Ba138)Dd, Bead, CD19, CD4, IgD, CD11b, CD14, CCR6, CCR7, PD-1
We see that many features arenβt validated. Letβs standardize the identifiers first to get rid of synonyms:
adata.var.index = lb.CellMarker.standardize(adata.var.index)
π‘ standardized 35/40 terms
After standardizing, we can validate our markers once more:
validated = lb.CellMarker.validate(adata.var.index)
β
35 terms (87.50%) are validated for name
β 5 terms (12.50%) are not validated for name: Time, Cell_length, Dead, (Ba138)Dd, Bead
More markers are validated now, but we still have 5 cell markers that seem more like metadata. Hence, letβs curate the AnnData object a bit more.
Letβs move metadata (non-validated cell markers) into adata.obs
:
adata.obs = adata[:, ~validated].to_df()
adata = adata[:, validated].copy()
Now we have a clean panel of 35 validated cell markers:
lb.CellMarker.validate(adata.var.index);
β
35 terms (100.00%) are validated for name
Next, letβs register the metadata features we moved to .obs:
# Feature.from_df creates feature records with type auto-populated
features = ln.Feature.from_df(adata.obs)
ln.add(features)
Lastly, weβd like to annotate this file with βassayβ.
Since we never validated the term βFACSβ, letβs search for itβs ontolog from public source and register it:
lb.ExperimentalFactor.bionty().search("FACS").head(2)
ontology_id | definition | synonyms | parents | molecule | instrument | measurement | __ratio__ | |
---|---|---|---|---|---|---|---|---|
name | ||||||||
fluorescence-activated cell sorting | EFO:0009108 | A Flow Cytometry Assay That Provides A Method ... | FACS|FAC sorting | [] | None | None | None | 100.0 |
FACS-seq | EFO:0008735 | Fluorescence-Activated Cell Sorting And Deep S... | None | [EFO:0001457] | RNA assay | None | None | 90.0 |
lb.ExperimentalFactor.from_bionty(ontology_id="EFO:0009108").save()
β
created 1 ExperimentalFactor record from Bionty matching ontology_id: 'EFO:0009108'
Register #
modalities = ln.Modality.lookup()
features = ln.Feature.lookup()
efs = lb.ExperimentalFactor.lookup()
species = lb.Species.lookup()
file = ln.File.from_anndata(
adata, description="Alpert19", field=lb.CellMarker.name, modality=modalities.protein
)
π‘ file will be copied to default storage upon `save()` with key `None` ('.lamindb/Pf9YEZ9F0JlDjZA4SvtR.h5ad')
π‘ parsing feature names of X stored in slot 'var'
β
35 terms (100.00%) are validated for name
β
linked: FeatureSet(id='5h0dt5FKgiqNbnp4p4bJ', n=35, type='number', registry='bionty.CellMarker', hash='ldY9_GmptHLCcT7Nrpgo', modality_id='XqL2I9hb', created_by_id='DzTjkKse')
π‘ parsing feature names of slot 'obs'
β
5 terms (100.00%) are validated for name
β
linked: FeatureSet(id='phVUsY5rsUZlQvrZL6W4', n=5, registry='core.Feature', hash='JAXyMu4GMkRC9F1sprVD', modality_id='Lj33xe6m', created_by_id='DzTjkKse')
file.save()
Show code cell output
β
saved 2 feature sets for slots: 'var','obs'
β
storing file 'Pf9YEZ9F0JlDjZA4SvtR' at '.lamindb/Pf9YEZ9F0JlDjZA4SvtR.h5ad'
file.add_labels(efs.fluorescence_activated_cell_sorting, features.assay)
file.add_labels(species.human, features.species)
Show code cell output
β
linked new feature 'assay' together with new feature set FeatureSet(id='jiOvvfjC6cw4cLpuCLP4', n=1, registry='core.Feature', hash='xJ3HV6pd02Tfm04qsxw0', updated_at=2023-09-06 17:08:05, modality_id='Lj33xe6m', created_by_id='DzTjkKse')
π‘ no file links to it anymore, deleting feature set FeatureSet(id='jiOvvfjC6cw4cLpuCLP4', n=1, registry='core.Feature', hash='xJ3HV6pd02Tfm04qsxw0', updated_at=2023-09-06 17:08:05, modality_id='Lj33xe6m', created_by_id='DzTjkKse')
β
linked new feature 'species' together with new feature set FeatureSet(id='Ch5FrKS00znfgHQvXmGN', n=2, registry='core.Feature', hash='qX1POCIiCFo8hEXOtLrP', updated_at=2023-09-06 17:08:06, modality_id='Lj33xe6m', created_by_id='DzTjkKse')
file.features
Features:
var: FeatureSet(id='5h0dt5FKgiqNbnp4p4bJ', n=35, type='number', registry='bionty.CellMarker', hash='ldY9_GmptHLCcT7Nrpgo', updated_at=2023-09-06 17:08:05, modality_id='XqL2I9hb', created_by_id='DzTjkKse')
'CD161', 'CD94', 'CD127', 'Cd14', 'CD11c', 'CD56', 'ICOS', 'CD86', 'CD33', 'CD38', ...
obs: FeatureSet(id='phVUsY5rsUZlQvrZL6W4', n=5, registry='core.Feature', hash='JAXyMu4GMkRC9F1sprVD', updated_at=2023-09-06 17:08:05, modality_id='Lj33xe6m', created_by_id='DzTjkKse')
Time (number)
Dead (number)
(Ba138)Dd (number)
Cell_length (number)
Bead (number)
external: FeatureSet(id='Ch5FrKS00znfgHQvXmGN', n=2, registry='core.Feature', hash='qX1POCIiCFo8hEXOtLrP', updated_at=2023-09-06 17:08:06, modality_id='Lj33xe6m', created_by_id='DzTjkKse')
π assay (1, bionty.ExperimentalFactor): 'fluorescence-activated cell sorting'
π species (1, bionty.Species): 'human'
Check a few validated cell markers in .var
:
file.features["var"].df().head()
name | synonyms | gene_symbol | ncbi_gene_id | uniprotkb_id | species_id | bionty_source_id | updated_at | created_by_id | |
---|---|---|---|---|---|---|---|---|---|
id | |||||||||
4EojtgN0CjBH | CD161 | KLRB1 | 3820 | Q12918 | uHJU | DcCt | 2023-09-06 17:08:02 | DzTjkKse | |
0qCmUijBeByY | CD94 | KLRD1 | 3824 | Q13241 | uHJU | DcCt | 2023-09-06 17:08:02 | DzTjkKse | |
hVNEgxlcDV10 | CD127 | IL7R | 3575 | P16871 | uHJU | DcCt | 2023-09-06 17:08:02 | DzTjkKse | |
roEbL8zuLC5k | Cd14 | CD14 | 4695 | O43678 | uHJU | DcCt | 2023-09-06 17:08:02 | DzTjkKse | |
L0WKZ3fufq0J | CD11c | ITGAX | 3687 | P20702 | uHJU | DcCt | 2023-09-06 17:08:02 | DzTjkKse |
FlowIO sample#
Letβs validate and register another flow file:
Access #
adata2 = readfcs.read(ln.dev.datasets.file_fcs())
This AnnData
object does not require filtering, normalizing or formatting, hence, there is no step.
Validate #
First, letβs standardize the cell markers:
adata2.var.index = lb.CellMarker.standardize(adata2.var.index)
Show code cell output
π‘ standardized 10/16 terms
β found 1 synonym in Bionty: ['KI67']
please add corresponding CellMarker records via `.from_values(['Ki67'])`
validated = lb.CellMarker.validate(adata2.var.index)
Show code cell output
β
10 terms (62.50%) are validated for name
β 6 terms (37.50%) are not validated for name: FSC-A, FSC-H, SSC-A, Ki67, CD45RO, CCR5
Register non-validated markers from Bionty:
records = lb.CellMarker.from_values(adata2.var.index[~validated])
ln.save(records)
Show code cell output
β
created 4 CellMarker records from Bionty matching name: 'SSC-A', 'Ki67', 'CD45RO', 'CCR5'
β did not create CellMarker records for 2 non-validated names: 'FSC-A', 'FSC-H'
Now they pass validation except for non-markers: βFSC-Aβ, βFSC-Hβ
lb.CellMarker.validate(adata2.var.index);
β
14 terms (87.50%) are validated for name
β 2 terms (12.50%) are not validated for name: FSC-A, FSC-H
Register #
file2 = ln.File.from_anndata(
adata2,
description="My fcs file",
field=lb.CellMarker.name,
modality=modalities.protein,
)
π‘ file will be copied to default storage upon `save()` with key `None` ('.lamindb/mb2LKG4iOAuwrSs7SoNS.h5ad')
π‘ parsing feature names of X stored in slot 'var'
β
14 terms (87.50%) are validated for name
β 2 terms (12.50%) are not validated for name: FSC-A, FSC-H
β
linked: FeatureSet(id='g89WQZesMhda1UA9ErbD', n=14, type='number', registry='bionty.CellMarker', hash='npy5P7AYbjKLInpXlNvb', modality_id='XqL2I9hb', created_by_id='DzTjkKse')
file2.save()
Show code cell output
β
saved 1 feature set for slot: 'var'
β
storing file 'mb2LKG4iOAuwrSs7SoNS' at '.lamindb/mb2LKG4iOAuwrSs7SoNS.h5ad'
file2.add_labels(efs.fluorescence_activated_cell_sorting, features.assay)
file2.add_labels(species.human, features.species)
Show code cell output
β
linked new feature 'assay' together with new feature set FeatureSet(id='2n6jCwtAD3VxEmEPIpvg', n=1, registry='core.Feature', hash='xJ3HV6pd02Tfm04qsxw0', updated_at=2023-09-06 17:08:09, modality_id='Lj33xe6m', created_by_id='DzTjkKse')
β
loaded: FeatureSet(id='Ch5FrKS00znfgHQvXmGN', n=2, registry='core.Feature', hash='qX1POCIiCFo8hEXOtLrP', updated_at=2023-09-06 17:08:06, modality_id='Lj33xe6m', created_by_id='DzTjkKse')
β
linked new feature 'species' together with new feature set FeatureSet(id='Ch5FrKS00znfgHQvXmGN', n=2, registry='core.Feature', hash='qX1POCIiCFo8hEXOtLrP', updated_at=2023-09-06 17:08:09, modality_id='Lj33xe6m', created_by_id='DzTjkKse')
file2.features
Features:
var: FeatureSet(id='g89WQZesMhda1UA9ErbD', n=14, type='number', registry='bionty.CellMarker', hash='npy5P7AYbjKLInpXlNvb', updated_at=2023-09-06 17:08:09, modality_id='XqL2I9hb', created_by_id='DzTjkKse')
'CD57', 'CD127', 'Cd14', 'Ccr7', 'SSC-A', 'Ki67', 'CD27', 'CCR5', 'CD28', 'CD3', ...
external: FeatureSet(id='Ch5FrKS00znfgHQvXmGN', n=2, registry='core.Feature', hash='qX1POCIiCFo8hEXOtLrP', updated_at=2023-09-06 17:08:09, modality_id='Lj33xe6m', created_by_id='DzTjkKse')
π assay (1, bionty.ExperimentalFactor): 'fluorescence-activated cell sorting'
π species (1, bionty.Species): 'human'
View data flow:
file2.view_flow()
Flow marker registry #
Check out your flow marker registry:
lb.CellMarker.filter().df()
Show code cell output
name | synonyms | gene_symbol | ncbi_gene_id | uniprotkb_id | species_id | bionty_source_id | updated_at | created_by_id | |
---|---|---|---|---|---|---|---|---|---|
id | |||||||||
4EojtgN0CjBH | CD161 | KLRB1 | 3820 | Q12918 | uHJU | DcCt | 2023-09-06 17:08:02 | DzTjkKse | |
0qCmUijBeByY | CD94 | KLRD1 | 3824 | Q13241 | uHJU | DcCt | 2023-09-06 17:08:02 | DzTjkKse | |
hVNEgxlcDV10 | CD127 | IL7R | 3575 | P16871 | uHJU | DcCt | 2023-09-06 17:08:02 | DzTjkKse | |
roEbL8zuLC5k | Cd14 | CD14 | 4695 | O43678 | uHJU | DcCt | 2023-09-06 17:08:02 | DzTjkKse | |
L0WKZ3fufq0J | CD11c | ITGAX | 3687 | P20702 | uHJU | DcCt | 2023-09-06 17:08:02 | DzTjkKse | |
h4rkCALR5WfU | CD56 | NCAM1 | 4684 | P13591 | uHJU | DcCt | 2023-09-06 17:08:02 | DzTjkKse | |
0vAls2cmLKWq | ICOS | ICOS | 29851 | Q53QY6 | uHJU | DcCt | 2023-09-06 17:08:02 | DzTjkKse | |
L0m6f7FPiDeg | CD86 | CD86 | 942 | A8K632 | uHJU | DcCt | 2023-09-06 17:08:02 | DzTjkKse | |
c3dZKHFOdllB | CD33 | CD33 | 945 | P20138 | uHJU | DcCt | 2023-09-06 17:08:02 | DzTjkKse | |
CR7DAHxybgyi | CD38 | CD38 | 952 | B4E006 | uHJU | DcCt | 2023-09-06 17:08:02 | DzTjkKse | |
4uiPHmCPV5i1 | CXCR5 | CXCR5 | 643 | A0N0R2 | uHJU | DcCt | 2023-09-06 17:08:02 | DzTjkKse | |
a624IeIqbchl | CD45RA | None | None | None | uHJU | DcCt | 2023-09-06 17:08:02 | DzTjkKse | |
bspnQ0igku6c | CD16 | FCGR3A | 2215 | O75015 | uHJU | DcCt | 2023-09-06 17:08:02 | DzTjkKse | |
fpPkjlGv15C9 | Ccr6 | CCR6 | 1235 | P51684 | uHJU | DcCt | 2023-09-06 17:08:02 | DzTjkKse | |
k0zGbSgZEX3q | HLADR | HLAβDR|HLA-DR|HLA DR | None | None | None | uHJU | DcCt | 2023-09-06 17:08:02 | DzTjkKse |
8OhpfB7wwV32 | Cd19 | CD19 | 930 | P15391 | uHJU | DcCt | 2023-09-06 17:08:02 | DzTjkKse | |
cFJEI6e6wml3 | CD20 | MS4A1 | 931 | A0A024R507 | uHJU | DcCt | 2023-09-06 17:08:02 | DzTjkKse | |
gEfe8qTsIHl0 | CD24 | CD24 | 100133941 | B6EC88 | uHJU | DcCt | 2023-09-06 17:08:02 | DzTjkKse | |
Nb2sscq9cBcB | CD57 | B3GAT1 | 27087 | Q9P2W7 | uHJU | DcCt | 2023-09-06 17:08:02 | DzTjkKse | |
YA5Ezh6SAy10 | DNA1 | None | None | None | uHJU | DcCt | 2023-09-06 17:08:02 | DzTjkKse | |
0evamYEdmaoY | Igd | None | None | None | uHJU | DcCt | 2023-09-06 17:08:02 | DzTjkKse | |
ljp5UfCF9HCi | TCRgd | TCRGAMMADELTA|TCRΞ³Ξ΄ | None | None | None | uHJU | DcCt | 2023-09-06 17:08:02 | DzTjkKse |
lRZYuH929QDw | CD85j | None | None | None | uHJU | DcCt | 2023-09-06 17:08:02 | DzTjkKse | |
sYcK7uoWCtco | Ccr7 | CCR7 | 1236 | P32248 | uHJU | DcCt | 2023-09-06 17:08:02 | DzTjkKse | |
yCyTIVxZkIUz | DNA2 | DNA2 | 1763 | P51530 | uHJU | DcCt | 2023-09-06 17:08:02 | DzTjkKse | |
2VeZenLi2dj5 | PD1 | PID1|PD-1|PD 1 | PDCD1 | 5133 | A0A0M3M0G7 | uHJU | DcCt | 2023-09-06 17:08:02 | DzTjkKse |
CLFUvJpioHoA | CD28 | CD28 | 940 | B4E0L1 | uHJU | DcCt | 2023-09-06 17:08:02 | DzTjkKse | |
n40112OuX7Cq | CD123 | IL3RA | 3563 | P26951 | uHJU | DcCt | 2023-09-06 17:08:02 | DzTjkKse | |
N2F6Qv9CxJch | CD11B | ITGAM | 3684 | P11215 | uHJU | DcCt | 2023-09-06 17:08:02 | DzTjkKse | |
a4hvNp34IYP0 | CD3 | None | None | None | uHJU | DcCt | 2023-09-06 17:08:02 | DzTjkKse | |
50v4SaR2m5zQ | CD25 | IL2RA | 3559 | P01589 | uHJU | DcCt | 2023-09-06 17:08:02 | DzTjkKse | |
HEK41hvaIazP | Cd4 | CD4 | 920 | B4DT49 | uHJU | DcCt | 2023-09-06 17:08:02 | DzTjkKse | |
ttBc0Fs01sYk | CD8 | CD8A | 925 | P01732 | uHJU | DcCt | 2023-09-06 17:08:02 | DzTjkKse | |
agQD0dEzuoNA | CXCR3 | CXCR3 | 2833 | P49682 | uHJU | DcCt | 2023-09-06 17:08:02 | DzTjkKse | |
uThe3c0V3d4i | CD27 | CD27 | 939 | P26842 | uHJU | DcCt | 2023-09-06 17:08:02 | DzTjkKse | |
VZBURNy04vBi | SSC-A | SSC A|SSCA | None | None | None | uHJU | DcCt | 2023-09-06 17:08:08 | DzTjkKse |
Qa4ozz9tyesQ | Ki67 | Ki-67|KI 67 | None | None | None | uHJU | DcCt | 2023-09-06 17:08:08 | DzTjkKse |
UMsp5g0fgMwY | CCR5 | CCR5 | 1234 | P51681 | uHJU | DcCt | 2023-09-06 17:08:08 | DzTjkKse | |
XvpJ6oL3SG7w | CD45RO | None | None | None | uHJU | DcCt | 2023-09-06 17:08:08 | DzTjkKse |
Search for a marker (synonyms aware):
Tip
Search for a non-registered marker from public source: lb.CellMarker.bionty().search(...)
lb.CellMarker.search("PD-1").head(2)
id | synonyms | __ratio__ | |
---|---|---|---|
name | |||
PD1 | 2VeZenLi2dj5 | PID1|PD-1|PD 1 | 100.0 |
CD16 | bspnQ0igku6c | 50.0 |
Auto-complete of markers:
cell_markers = lb.CellMarker.lookup()
cell_markers.cd14
CellMarker(id='roEbL8zuLC5k', name='Cd14', synonyms='', gene_symbol='CD14', ncbi_gene_id='4695', uniprotkb_id='O43678', updated_at=2023-09-06 17:08:02, species_id='uHJU', bionty_source_id='DcCt', created_by_id='DzTjkKse')
Query panels and datasets based on markers, e.g. which datasets have CD14 in the flow panel:
panels_with_cd14 = ln.FeatureSet.filter(cell_markers=cell_markers.cd14).all()
ln.File.filter(feature_sets__in=panels_with_cd14).df()
storage_id | key | suffix | accessor | description | version | size | hash | hash_type | transform_id | run_id | initial_version_id | updated_at | created_by_id | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
id | ||||||||||||||
Pf9YEZ9F0JlDjZA4SvtR | 7BMzjDBU | None | .h5ad | AnnData | Alpert19 | None | 33367624 | 14w5ElNsR_MqdiJtvnS1aw | md5 | OWuTtS4SAponz8 | EHPP1Ldy9I7CweDEXlV6 | None | 2023-09-06 17:08:05 | DzTjkKse |
mb2LKG4iOAuwrSs7SoNS | 7BMzjDBU | None | .h5ad | AnnData | My fcs file | None | 6876232 | Cf4Fhfw_RDMtKd5amM6Gtw | md5 | OWuTtS4SAponz8 | EHPP1Ldy9I7CweDEXlV6 | None | 2023-09-06 17:08:09 | DzTjkKse |
Shared cell markers between two files:
# no need to load the content of files
files = ln.File.filter(feature_sets__in=panels_with_cd14, species=species.human).list()
file1, file2 = files[0], files[1]
file1_markers = file1.features["var"]
file2_markers = file2.features["var"]
shared_markers = file1_markers & file2_markers
shared_markers.list("name")
['CD127', 'Cd14', 'Cd19', 'CD57', 'Ccr7', 'CD28', 'CD3', 'Cd4', 'CD8', 'CD27']
Load file in memory:
adata = file1.load()
adata
AnnData object with n_obs Γ n_vars = 166537 Γ 35
obs: 'Time', 'Cell_length', 'Dead', '(Ba138)Dd', 'Bead'
var: 'n', 'channel', 'marker', '$PnB', '$PnE', '$PnR'
uns: 'meta'
# clean up test instance
!lamin delete --force test-flow
!rm -r test-flow
Show code cell output
π‘ deleting instance testuser1/test-flow
β
deleted instance settings file: /home/runner/.lamin/instance--testuser1--test-flow.env
β
instance cache deleted
β
deleted '.lndb' sqlite file
β consider manually deleting your stored data: /home/runner/work/lamin-usecases/lamin-usecases/docs/test-flow