Jupyter Notebook

Project flow#

LaminDB allows tracking data flow on the entire project level.

Here, we walk through exemplified app uploads, pipelines & notebooks following Schmidt et al., 2022.

A CRISPR screen reading out a phenotypic endpoint on T cells is paired with scRNA-seq to generate insights into IFN-Ξ³ production.

These insights get linked back to the original data through the steps taken in the project to provide context for interpretation & future decision making.

More specifically: Why should I care about data flow?

Data flow tracks data sources & transformations to trace biological insights, verify experimental outcomes, meet regulatory standards, increase the robustness of research and optimize the feedback loop of team-wide learning iterations.

While tracking data flow is easier when it’s governed by deterministic pipelines, it becomes hard when it’s governed by interactive human-driven analyses.

LaminDB interfaces workflow mangers for the former and embraces the latter.

Setup#

Init a test instance:

!lamin init --storage ./mydata
Hide code cell output
πŸ’‘ creating schemas: core==0.47.5 
βœ… saved: User(id='DzTjkKse', handle='testuser1', email='testuser1@lamin.ai', name='Test User1', updated_at=2023-09-06 17:07:13)
βœ… saved: Storage(id='Udj9u0Sg', root='/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata', type='local', updated_at=2023-09-06 17:07:13, created_by_id='DzTjkKse')
βœ… loaded instance: testuser1/mydata
πŸ’‘ did not register local instance on hub (if you want, call `lamin register`)

Import lamindb:

import lamindb as ln
from IPython.display import Image, display
βœ… loaded instance: testuser1/mydata (lamindb 0.52.2)

Steps#

In the following, we walk through exemplified steps covering different types of transforms (Transform).

Note

The full notebooks are in this repository.

App upload of phenotypic data #

Register data through app upload from wetlab by testuser1:

ln.setup.login("testuser1")
transform = ln.Transform(name="Upload GWS CRISPRa result", type="app")
ln.track(transform)
output_path = ln.dev.datasets.schmidt22_crispra_gws_IFNG(ln.settings.storage)
output_file = ln.File(output_path, description="Raw data of schmidt22 crispra GWS")
output_file.save()
Hide code cell output
βœ… logged in with email testuser1@lamin.ai and id DzTjkKse
βœ… saved: Transform(id='9zlBz3Xgc2IvZn', name='Upload GWS CRISPRa result', type='app', updated_at=2023-09-06 17:07:16, created_by_id='DzTjkKse')
βœ… saved: Run(id='Mh7ZIOGLh4Na8EtEQZ1J', run_at=2023-09-06 17:07:16, transform_id='9zlBz3Xgc2IvZn', created_by_id='DzTjkKse')
πŸ’‘ file in storage 'mydata' with key 'schmidt22-crispra-gws-IFNG.csv'

Hit identification in notebook #

Access, transform & register data in drylab by testuser2:

ln.setup.login("testuser2")
transform = ln.Transform(name="GWS CRIPSRa analysis", type="notebook")
ln.track(transform)
# access
input_file = ln.File.filter(key="schmidt22-crispra-gws-IFNG.csv").one()
# identify hits
input_df = input_file.load().set_index("id")
output_df = input_df[input_df["pos|fdr"] < 0.01].copy()
# register hits in output file
ln.File(output_df, description="hits from schmidt22 crispra GWS").save()
Hide code cell output
βœ… logged in with email testuser2@lamin.ai and id bKeW4T6E
βœ… saved: User(id='bKeW4T6E', handle='testuser2', email='testuser2@lamin.ai', name='Test User2', updated_at=2023-09-06 17:07:18)
βœ… saved: Transform(id='UGgTnujdMjmqf6', name='GWS CRIPSRa analysis', type='notebook', updated_at=2023-09-06 17:07:18, created_by_id='bKeW4T6E')
βœ… saved: Run(id='E2t4mz0kkJfRinWQrscv', run_at=2023-09-06 17:07:18, transform_id='UGgTnujdMjmqf6', created_by_id='bKeW4T6E')
πŸ’‘ adding file gsUgigboT5ZeRSTCNsE6 as input for run E2t4mz0kkJfRinWQrscv, adding parent transform 9zlBz3Xgc2IvZn
πŸ’‘ file will be copied to default storage upon `save()` with key `None` ('.lamindb/OzkiIMBLbKgZXDrREzEg.parquet')
πŸ’‘ data is a dataframe, consider using .from_df() to link column names as features
βœ… storing file 'OzkiIMBLbKgZXDrREzEg' at '.lamindb/OzkiIMBLbKgZXDrREzEg.parquet'

Inspect data flow:

file = ln.File.filter(description="hits from schmidt22 crispra GWS").one()
file.view_flow()
https://d33wubrfki0l68.cloudfront.net/8fb013426695bdc238f919bbeb09d46844d4045e/28d11/_images/abf58390a3633f32995da080ee509175674b7c29ce16b29ccbe4b6d8b13a2326.svg

Sequencer upload #

Upload files from sequencer:

ln.setup.login("testuser1")
ln.track(ln.Transform(name="Chromium 10x upload", type="pipeline"))
# register output files of upload
upload_dir = ln.dev.datasets.dir_scrnaseq_cellranger(
    "perturbseq", basedir=ln.settings.storage, output_only=False
)
ln.File(upload_dir.parent / "fastq/perturbseq_R1_001.fastq.gz").save()
ln.File(upload_dir.parent / "fastq/perturbseq_R2_001.fastq.gz").save()
ln.setup.login("testuser2")
Hide code cell output
βœ… logged in with email testuser1@lamin.ai and id DzTjkKse
βœ… saved: Transform(id='ltkGKFRg4sbMte', name='Chromium 10x upload', type='pipeline', updated_at=2023-09-06 17:07:20, created_by_id='DzTjkKse')
βœ… saved: Run(id='vAm0C5eKHe74FlbUAqC1', run_at=2023-09-06 17:07:20, transform_id='ltkGKFRg4sbMte', created_by_id='DzTjkKse')
❗ file has more than one suffix (path.suffixes), inferring:'.fastq.gz'
πŸ’‘ file in storage 'mydata' with key 'fastq/perturbseq_R1_001.fastq.gz'
❗ file has more than one suffix (path.suffixes), inferring:'.fastq.gz'
πŸ’‘ file in storage 'mydata' with key 'fastq/perturbseq_R2_001.fastq.gz'
βœ… logged in with email testuser2@lamin.ai and id bKeW4T6E

scRNA-seq bioinformatics pipeline #

Process uploaded files using a script or workflow manager: Pipelines and obtain 3 output files in a directory filtered_feature_bc_matrix/:

transform = ln.Transform(name="Cell Ranger", version="7.2.0", type="pipeline")
ln.track(transform)
# access uploaded files as inputs for the pipeline
input_files = ln.File.filter(key__startswith="fastq/perturbseq").all()
input_paths = [file.stage() for file in input_files]
# register output files
output_files = ln.File.from_dir("./mydata/perturbseq/filtered_feature_bc_matrix/")
ln.save(output_files)
Hide code cell output
βœ… saved: Transform(id='4XIBS8xJGi8sFs', name='Cell Ranger', version='7.2.0', type='pipeline', updated_at=2023-09-06 17:07:22, created_by_id='bKeW4T6E')
βœ… saved: Run(id='Ssq3hkHqB73ZwZ7zcETE', run_at=2023-09-06 17:07:22, transform_id='4XIBS8xJGi8sFs', created_by_id='bKeW4T6E')
πŸ’‘ adding file ATw96RJQxoswHdScqLnL as input for run Ssq3hkHqB73ZwZ7zcETE, adding parent transform ltkGKFRg4sbMte
πŸ’‘ adding file zwYFmU5OADqTlYaKtVlu as input for run Ssq3hkHqB73ZwZ7zcETE, adding parent transform ltkGKFRg4sbMte
❗ file has more than one suffix (path.suffixes), inferring:'.tsv.gz'
❗ file has more than one suffix (path.suffixes), inferring:'.tsv.gz'
❗ file has more than one suffix (path.suffixes), using only last suffix: '.gz'
βœ… created 3 files from directory using storage /home/runner/work/lamin-usecases/lamin-usecases/docs/mydata and key = perturbseq/filtered_feature_bc_matrix/

Post-process these 3 files:

transform = ln.Transform(name="Postprocess Cell Ranger", version="2.0", type="pipeline")
ln.track(transform)
input_files = [f.stage() for f in output_files]
output_path = ln.dev.datasets.schmidt22_perturbseq(basedir=ln.settings.storage)
output_file = ln.File(output_path, description="perturbseq counts")
output_file.save()
Hide code cell output
❗ record with similar name exist! did you mean to load it?
id __ratio__
name
Cell Ranger 4XIBS8xJGi8sFs 90.0
βœ… saved: Transform(id='h7U5HRgHwlEtGy', name='Postprocess Cell Ranger', version='2.0', type='pipeline', updated_at=2023-09-06 17:07:22, created_by_id='bKeW4T6E')
βœ… saved: Run(id='amikacjTRYhZzVYxi0uk', run_at=2023-09-06 17:07:22, transform_id='h7U5HRgHwlEtGy', created_by_id='bKeW4T6E')
πŸ’‘ adding file cZiu9ejcDmgQEtlXBoxS as input for run amikacjTRYhZzVYxi0uk, adding parent transform 4XIBS8xJGi8sFs
πŸ’‘ adding file bMxW8PX5OdIESwgN8g8g as input for run amikacjTRYhZzVYxi0uk, adding parent transform 4XIBS8xJGi8sFs
πŸ’‘ adding file kxEtq1lqJ2WvKTDCu8Kj as input for run amikacjTRYhZzVYxi0uk, adding parent transform 4XIBS8xJGi8sFs
πŸ’‘ file in storage 'mydata' with key 'schmidt22_perturbseq.h5ad'
πŸ’‘ data is AnnDataLike, consider using .from_anndata() to link var_names and obs.columns as features

Inspect data flow:

output_files[0].view_flow()
https://d33wubrfki0l68.cloudfront.net/d7660a9441641c15a6d272e05cff5a4edcc8dbcd/61b1d/_images/0844e9a35462ee803945ba8a81c74c9e3bff1b8b78180439ccc58bc1a1847d97.svg

Integrate scRNA-seq & phenotypic data #

Integrate data in a notebook:

transform = ln.Transform(
    name="Perform single cell analysis, integrate with CRISPRa screen",
    type="notebook",
)
ln.track(transform)

file_ps = ln.File.filter(description__icontains="perturbseq").one()
adata = file_ps.load()
file_hits = ln.File.filter(description="hits from schmidt22 crispra GWS").one()
screen_hits = file_hits.load()

import scanpy as sc

sc.tl.score_genes(adata, adata.var_names.intersection(screen_hits.index).tolist())
filesuffix = "_fig1_score-wgs-hits.png"
sc.pl.umap(adata, color="score", show=False, save=filesuffix)
filepath = f"figures/umap{filesuffix}"
file = ln.File(filepath, key=filepath)
file.save()
filesuffix = "fig2_score-wgs-hits-per-cluster.png"
sc.pl.matrixplot(
    adata, groupby="cluster_name", var_names=["score"], show=False, save=filesuffix
)
filepath = f"figures/matrixplot_{filesuffix}"
file = ln.File(filepath, key=filepath)
file.save()
Hide code cell output
❗ records with similar names exist! did you mean to load one of them?
id __ratio__
name
Cell Ranger 4XIBS8xJGi8sFs 85.5
GWS CRIPSRa analysis UGgTnujdMjmqf6 85.5
Postprocess Cell Ranger h7U5HRgHwlEtGy 85.5
Upload GWS CRISPRa result 9zlBz3Xgc2IvZn 85.5
βœ… saved: Transform(id='dxHUsksyyvEsyS', name='Perform single cell analysis, integrate with CRISPRa screen', type='notebook', updated_at=2023-09-06 17:07:24, created_by_id='bKeW4T6E')
βœ… saved: Run(id='CDJe5lOSCtuq4PfCgeGo', run_at=2023-09-06 17:07:24, transform_id='dxHUsksyyvEsyS', created_by_id='bKeW4T6E')
πŸ’‘ adding file B1AJFQ7IeoUgiRt3dHnY as input for run CDJe5lOSCtuq4PfCgeGo, adding parent transform h7U5HRgHwlEtGy
πŸ’‘ adding file OzkiIMBLbKgZXDrREzEg as input for run CDJe5lOSCtuq4PfCgeGo, adding parent transform UGgTnujdMjmqf6
WARNING: saving figure to file figures/umap_fig1_score-wgs-hits.png
πŸ’‘ file will be copied to default storage upon `save()` with key 'figures/umap_fig1_score-wgs-hits.png'
βœ… storing file 'azpJZMuHZ4ZGQK6aPdwe' at 'figures/umap_fig1_score-wgs-hits.png'
WARNING: saving figure to file figures/matrixplot_fig2_score-wgs-hits-per-cluster.png
πŸ’‘ file will be copied to default storage upon `save()` with key 'figures/matrixplot_fig2_score-wgs-hits-per-cluster.png'
βœ… storing file 'rpVLIkwI2z6NBXeOKyN1' at 'figures/matrixplot_fig2_score-wgs-hits-per-cluster.png'

Review results#

Let’s load one of the plots:

ln.track()
file = ln.File.filter(key__contains="figures/matrixplot").one()
file.stage()
Hide code cell output
πŸ’‘ notebook imports: ipython==8.15.0 lamindb==0.52.2 scanpy==1.9.4
βœ… saved: Transform(id='1LCd8kco9lZUz8', name='Project flow', short_name='project-flow', version='0', type=notebook, updated_at=2023-09-06 17:07:26, created_by_id='bKeW4T6E')
βœ… saved: Run(id='XT60q0CRDS8sL7isxBC0', run_at=2023-09-06 17:07:26, transform_id='1LCd8kco9lZUz8', created_by_id='bKeW4T6E')
πŸ’‘ adding file rpVLIkwI2z6NBXeOKyN1 as input for run XT60q0CRDS8sL7isxBC0, adding parent transform dxHUsksyyvEsyS
PosixUPath('/home/runner/work/lamin-usecases/lamin-usecases/docs/mydata/figures/matrixplot_fig2_score-wgs-hits-per-cluster.png')
display(Image(filename=file.path))
https://d33wubrfki0l68.cloudfront.net/dcbd1e67232f2ede82171ba02237575cc586c2b7/1ceff/_images/45891ad4693b5bfeb52a48b2ab2e5d0a82220b9482360ee1a8757fad581fffdc.png

We see that the image file is tracked as an input of the current notebook. The input is highlighted, the notebook follows at the bottom:

file.view_flow()
https://d33wubrfki0l68.cloudfront.net/af95bf78453291e314f67df8c8bbd295407fafe1/c59c7/_images/d1854eef8b281dbd410d71cc37fe43578571bece36ca918e7689192a923e56c2.svg

Alternatively, we can also look at the sequence of transforms:

transform = ln.Transform.search("Bird's eye view", return_queryset=True).first()
transform.parents.df()
name short_name version type reference initial_version_id updated_at created_by_id
id
UGgTnujdMjmqf6 GWS CRIPSRa analysis None None notebook None None 2023-09-06 17:07:19 bKeW4T6E
h7U5HRgHwlEtGy Postprocess Cell Ranger None 2.0 pipeline None None 2023-09-06 17:07:23 bKeW4T6E
transform.view_parents()
https://d33wubrfki0l68.cloudfront.net/94a025b6fdf9309a374e95036c807865ad86a0d9/87c98/_images/599bf46ee1589e20457bbb2d4cec16b9040e5cadd9294648f5c8c15f9cbcc093.svg

Understand runs#

We tracked pipeline and notebook runs through run_context, which stores a Transform and a Run record as a global context.

File objects are the inputs and outputs of runs.

What if I don’t want a global context?

Sometimes, we don’t want to create a global run context but manually pass a run when creating a file:

run = ln.Run(transform=transform)
ln.File(filepath, run=run)
When does a file appear as a run input?

When accessing a file via stage(), load() or backed(), two things happen:

  1. The current run gets added to file.input_of

  2. The transform of that file gets added as a parent of the current transform

You can then switch off auto-tracking of run inputs if you set ln.settings.track_run_inputs = False: Can I disable tracking run inputs?

You can also track run inputs on a case by case basis via is_run_input=True, e.g., here:

file.load(is_run_input=True)

Query by provenance#

We can query or search for the notebook that created the file:

transform = ln.Transform.search("GWS CRIPSRa analysis", return_queryset=True).first()

And then find all the files created by that notebook:

ln.File.filter(transform=transform).df()
storage_id key suffix accessor description version size hash hash_type transform_id run_id initial_version_id updated_at created_by_id
id
OzkiIMBLbKgZXDrREzEg Udj9u0Sg None .parquet DataFrame hits from schmidt22 crispra GWS None 18368 O2Owo0_QlM9JBS2zAZD4Lw md5 UGgTnujdMjmqf6 E2t4mz0kkJfRinWQrscv None 2023-09-06 17:07:19 bKeW4T6E

Which transform ingested a given file?

file = ln.File.filter().first()
file.transform
Transform(id='9zlBz3Xgc2IvZn', name='Upload GWS CRISPRa result', type='app', updated_at=2023-09-06 17:07:17, created_by_id='DzTjkKse')

And which user?

file.created_by
User(id='DzTjkKse', handle='testuser1', email='testuser1@lamin.ai', name='Test User1', updated_at=2023-09-06 17:07:20)

Which transforms were created by a given user?

users = ln.User.lookup()
ln.Transform.filter(created_by=users.testuser2).df()
name short_name version type reference initial_version_id updated_at created_by_id
id
UGgTnujdMjmqf6 GWS CRIPSRa analysis None None notebook None None 2023-09-06 17:07:19 bKeW4T6E
4XIBS8xJGi8sFs Cell Ranger None 7.2.0 pipeline None None 2023-09-06 17:07:22 bKeW4T6E
h7U5HRgHwlEtGy Postprocess Cell Ranger None 2.0 pipeline None None 2023-09-06 17:07:23 bKeW4T6E
dxHUsksyyvEsyS Perform single cell analysis, integrate with C... None None notebook None None 2023-09-06 17:07:25 bKeW4T6E
1LCd8kco9lZUz8 Project flow project-flow 0 notebook None None 2023-09-06 17:07:26 bKeW4T6E

Which notebooks were created by a given user?

ln.Transform.filter(created_by=users.testuser2, type="notebook").df()
name short_name version type reference initial_version_id updated_at created_by_id
id
UGgTnujdMjmqf6 GWS CRIPSRa analysis None None notebook None None 2023-09-06 17:07:19 bKeW4T6E
dxHUsksyyvEsyS Perform single cell analysis, integrate with C... None None notebook None None 2023-09-06 17:07:25 bKeW4T6E
1LCd8kco9lZUz8 Project flow project-flow 0 notebook None None 2023-09-06 17:07:26 bKeW4T6E

We can also view all recent additions to the entire database:

ln.view()
Hide code cell output
File

storage_id key suffix accessor description version size hash hash_type transform_id run_id initial_version_id updated_at created_by_id
id
rpVLIkwI2z6NBXeOKyN1 Udj9u0Sg figures/matrixplot_fig2_score-wgs-hits-per-clu... .png None None None 28814 JYIPcat0YWYVCX3RVd3mww md5 dxHUsksyyvEsyS CDJe5lOSCtuq4PfCgeGo None 2023-09-06 17:07:25 bKeW4T6E
azpJZMuHZ4ZGQK6aPdwe Udj9u0Sg figures/umap_fig1_score-wgs-hits.png .png None None None 118999 laQjVk4gh70YFzaUyzbUNg md5 dxHUsksyyvEsyS CDJe5lOSCtuq4PfCgeGo None 2023-09-06 17:07:25 bKeW4T6E
B1AJFQ7IeoUgiRt3dHnY Udj9u0Sg schmidt22_perturbseq.h5ad .h5ad AnnData perturbseq counts None 20659936 la7EvqEUMDlug9-rpw-udA md5 h7U5HRgHwlEtGy amikacjTRYhZzVYxi0uk None 2023-09-06 17:07:23 bKeW4T6E
cZiu9ejcDmgQEtlXBoxS Udj9u0Sg perturbseq/filtered_feature_bc_matrix/barcodes... .tsv.gz None None None 6 97nWvv88hWxE99rke-sxXw md5 4XIBS8xJGi8sFs Ssq3hkHqB73ZwZ7zcETE None 2023-09-06 17:07:22 bKeW4T6E
kxEtq1lqJ2WvKTDCu8Kj Udj9u0Sg perturbseq/filtered_feature_bc_matrix/matrix.m... .gz None None None 6 MOcYvUKNZwWZyhtlrWmB4Q md5 4XIBS8xJGi8sFs Ssq3hkHqB73ZwZ7zcETE None 2023-09-06 17:07:22 bKeW4T6E
bMxW8PX5OdIESwgN8g8g Udj9u0Sg perturbseq/filtered_feature_bc_matrix/features... .tsv.gz None None None 6 uy-TIga_67kTxT9eKK_bzg md5 4XIBS8xJGi8sFs Ssq3hkHqB73ZwZ7zcETE None 2023-09-06 17:07:22 bKeW4T6E
zwYFmU5OADqTlYaKtVlu Udj9u0Sg fastq/perturbseq_R2_001.fastq.gz .fastq.gz None None None 6 XJher6k6hT_6I9hPGitzgQ md5 ltkGKFRg4sbMte vAm0C5eKHe74FlbUAqC1 None 2023-09-06 17:07:20 DzTjkKse
Run

transform_id run_at created_by_id reference reference_type
id
Mh7ZIOGLh4Na8EtEQZ1J 9zlBz3Xgc2IvZn 2023-09-06 17:07:16 DzTjkKse None None
E2t4mz0kkJfRinWQrscv UGgTnujdMjmqf6 2023-09-06 17:07:18 bKeW4T6E None None
vAm0C5eKHe74FlbUAqC1 ltkGKFRg4sbMte 2023-09-06 17:07:20 DzTjkKse None None
Ssq3hkHqB73ZwZ7zcETE 4XIBS8xJGi8sFs 2023-09-06 17:07:22 bKeW4T6E None None
amikacjTRYhZzVYxi0uk h7U5HRgHwlEtGy 2023-09-06 17:07:22 bKeW4T6E None None
CDJe5lOSCtuq4PfCgeGo dxHUsksyyvEsyS 2023-09-06 17:07:24 bKeW4T6E None None
XT60q0CRDS8sL7isxBC0 1LCd8kco9lZUz8 2023-09-06 17:07:26 bKeW4T6E None None
Storage

root type region updated_at created_by_id
id
Udj9u0Sg /home/runner/work/lamin-usecases/lamin-usecase... local None 2023-09-06 17:07:13 DzTjkKse
Transform

name short_name version type reference initial_version_id updated_at created_by_id
id
1LCd8kco9lZUz8 Project flow project-flow 0 notebook None None 2023-09-06 17:07:26 bKeW4T6E
dxHUsksyyvEsyS Perform single cell analysis, integrate with C... None None notebook None None 2023-09-06 17:07:25 bKeW4T6E
h7U5HRgHwlEtGy Postprocess Cell Ranger None 2.0 pipeline None None 2023-09-06 17:07:23 bKeW4T6E
4XIBS8xJGi8sFs Cell Ranger None 7.2.0 pipeline None None 2023-09-06 17:07:22 bKeW4T6E
ltkGKFRg4sbMte Chromium 10x upload None None pipeline None None 2023-09-06 17:07:20 DzTjkKse
UGgTnujdMjmqf6 GWS CRIPSRa analysis None None notebook None None 2023-09-06 17:07:19 bKeW4T6E
9zlBz3Xgc2IvZn Upload GWS CRISPRa result None None app None None 2023-09-06 17:07:17 DzTjkKse
User

handle email name updated_at
id
bKeW4T6E testuser2 testuser2@lamin.ai Test User2 2023-09-06 17:07:22
DzTjkKse testuser1 testuser1@lamin.ai Test User1 2023-09-06 17:07:20
Hide code cell content
!lamin login testuser1
!lamin delete --force mydata
!rm -r ./mydata
βœ… logged in with email testuser1@lamin.ai and id DzTjkKse
πŸ’‘ deleting instance testuser1/mydata
βœ…     deleted instance settings file: /home/runner/.lamin/instance--testuser1--mydata.env
βœ…     instance cache deleted
βœ…     deleted '.lndb' sqlite file
❗     consider manually deleting your stored data: /home/runner/work/lamin-usecases/lamin-usecases/docs/mydata